
JIT renaming and lazy write-
back on the Cell/B.E.

Pieter Bellens, Josep M. Perez,
Rosa M. Badia, Jesus Labarta

Barcelona Supercomputing Center (BSC-CNS)
pieter.bellens@bsc.es

Overview

•Cell Broadband Engine (Cell/B.E.)

•Cell Superscalar (CellSs)

•Bypassing

•Motivation

• Implementation

•Results

• Lazy write-back

• Just-In-Time renaming

•Current status and ongoing work

Cell Broadband Engine

256 Kb

asynchronous DMA

transfers

2 hardware threads

CellSs

Runtime environment that automatically parallelizes

sequential user applications for the Cell/B.E.

PPE
SPE

user application

CellSs compiler

CellSs SPE runtimeCellSs PPE runtime

Parallel Cell/B.E.

application

SPE SPE

SPE SPE

SPE SPE

SPE

CellSs: sample code (sparse LU)

int main(int argc, char **argv) {
int ii, jj, kk;
…

 for (kk=0; kk<NB; kk++) {

lu0(A[kk][kk]);

 for (jj=kk+1; jj<NB; jj++)

 if (A[kk][jj] != NULL)

 fwd(A[kk][kk], A[kk][jj]);

 for (ii=kk+1; ii<NB; ii++)

 if (A[ii][kk] != NULL) {

 bdiv (A[kk][kk], A[ii][kk]);

 for (jj=kk+1; jj<NB; jj++)

 if (A[kk][jj] != NULL) {

 if (A[ii][jj]==NULL)

 A[ii][jj]=allocate_clean_block();

 bmod(A[ii][kk], A[kk][jj], A[ii][jj]);

 }

 }

 }
}

void lu0(float *diag);

void bdiv(float *diag, float *row);

void bmod(float *row, float *col, float *inner);

void fwd(float *diag, float *col);

B

B
NB

NB

B

B

CellSs: sample code (sparse LU)

int main(int argc, char **argv) {
int ii, jj, kk;
…

 for (kk=0; kk<NB; kk++) {

lu0(A[kk][kk]);

 for (jj=kk+1; jj<NB; jj++)

 if (A[kk][jj] != NULL)

 fwd(A[kk][kk], A[kk][jj]);

 for (ii=kk+1; ii<NB; ii++)

 if (A[ii][kk] != NULL) {

 bdiv (A[kk][kk], A[ii][kk]);

 for (jj=kk+1; jj<NB; jj++)

 if (A[kk][jj] != NULL) {

 if (A[ii][jj]==NULL)

 A[ii][jj]=allocate_clean_block();

 bmod(A[ii][kk], A[kk][jj], A[ii][jj]);

 }

 }

 }
}

#pragma css task inout(diag[B][B])

void lu0(float *diag);

#pragma css task input(diag[B][B]) inout(row[B][B])

void bdiv(float *diag, float *row);

#pragma css task input(row[B][B],col[B][B]) inout(inner[B][B])

void bmod(float *row, float *col, float *inner);

#pragma css task input(diag[B][B]) inout(col[B][B])
void fwd(float *diag, float *col);

B

B
NB

NB

B

B

CellSs: compiler

app.c

CellSs
compiler

app_spe.c

app_ppe.c

llib_css-spe.so

Cell
executable

llib_css-ppe.so

 SPE Linker

 PPE Linker

SPE
executable SPE Compiler app_spe.o

 PPE Compiler app_ppe.o
 SPE Embedder

 SPE Linker

PPE
Object

SDK

CellSs SPE library

CellSs SPE library

annotated user application

parallel Cell/B.E.

application

CellSs: runtime libraries

PPE

memory

user data

TDG

user

main

program

CellSs main thread CellSs helper thread

1) task creation

2) dependence analysis and data renaming

3) update TDG

4) scheduling

5) synchronisation with SPEs

renaming table

1

2

3

4

5

SPE

original

task

code

6) stage in

7) execute

8) stage out and synchronisation

6

7

8

CellSs: runtime behaviour (matrix multiply)

• Visualization of the runtime phases in function of time using Paraver

• Each phase is assigned a different colour

• SPE task execution

• SPE DMA wait

• Thread idling

CellSs: runtime behaviour (matrix multiply)

Bypassing: motivation

A new architecture, but the song remains the same:

Improve the performance

•General computation pattern

•PPE generates work for SPEs

•SPEs repeatedly fetch work and perform computation

•Traditional approach vs. bypassing approach

•Cell/B.E. Interconnect

•Element Interconnect Bus (EIB)

Let's take a closer look at code executing on the Cell/B.E.:

Bypassing: motivation: general computation pattern

stage in execute stage out

memory

access!

memory

access!

2 stage out

3 stage in

4 stage out

traditional:

main memory

1 stage in

SPE1 SPE2

Bypassing: motivation: Cell/B.E. interconnect

Element Interconnect Bus (EIB):

 “Another class of bottlenecks is contention. For instance, if four SPEs are trying to move data

 to or from the MIC at the same time, their aggregate bandwidth of 102.4GB/sec completely

swamps the MIC's bandwidth of 25.6GB/sec. Similarly, while the SPEs are trying to interact with

the MIC, the PPE may have degraded access to main memory. When a unit is overwhelmed,

it might need to retry commands, which in turn slows traffic down even further.”

David Krolak, “Unleashing the Cell Broadband Engine Processor: the Element Interconnect Bus”

Bypassing: motivation

How does contention and blocking influence the execution?

• Countermeasures:

• software cache in the LS of an SPE

• double buffering

• ???

Bypassing: motivation

Transfer objects between the LS of SPEs

without going through main memory

•General idea:

•Effect on PPE threads?

Bypassing: motivation

stage in execute stage out

memory

access

or bypass

free up

LS space

main memory

1 stage in

2 bypass

(3 stage out)

bypassing:

SPE1 SPE2

Bypassing: implementation

• General solution

• SPE runtime autonomously decides to go to main memory or to

bypass from another SPE

• No need to tailor the bypassing mechanism to a specific

application

• Implemented using the SPE's Atomic Cache Unit (ACU)

• Location of software objects in the system is updated using the

ACU

• Distributed solution

• Makes good use of hardware features

Bypassing: results: opportunities for bypassing

Are there opportunities to bypass data from one SPE to another?

Bypassing: results: reduction in wait time

Does the wait time effectively decrease when bypassing?

Lazy write-back: concept

#pragma css task inout(a)

void foo(int a[4096]);

int a[4096];

int main(int argc, char *argv[])

{

...

foo(a);

...

foo(a);

...

return 0;

}

main memory

1 stage in

2 bypass

(3 stage out)

(4 stage out)

• Do not tranfer objects back to main memory unless strictly necessary

• Exploit the information available in the bypassing mechanism

• object versions

• read count of a version

• Token passing to avoid early stage-outs

a[4096]

SPE1

buffer

SPE2

buffer

Lazy write-back: example

main memory

1 stage in

2 bypass

(3 stage out)

(7 stage out)

1. Task 1 reads and writes a → Obj(a,1)

2. Task 2 reads a (Obj(a,1))

3. Task 3 reads a (Obj(a,1))

4. Task 4 reads and writes a → Obj(a,2)

5. Task 5 reads a (Obj(a,2))

a[4096]

SPE1

buffer

SPE2

buffer

• Below is the perfect scenario

• Variations possible depending on
relative ordering of execution of tasks
and schedule

SPE3

buffer

1
2

3

5
4

4 bypass

8 stage out

6 bypass

(5 stage out)

Lazy write-back: results

Can we avoid a significant fraction of the tranfers to main memory?

Renaming: traditional concept

#pragma css task inout(a)

void foo(int a[4096]);

#pragma css task out(a)

void moo(int a[4096]);

int a[4096];

int main(int argc, char *argv[])

{

...

...

...

return 0;

}

main memory original object, “user space”

renaming, “CellSs space”

• Renaming improves parallelism at the cost of extra
memory.

• Centralized

A[4096]

A_ren[4096]

foo(a)

moo(a)

Renaming: traditional concept

SPE1 SPE2

main memory

A[4096]

A_ren[4096]

buffer A buffer B

foo moo

Explicit renaming

in main memory

Explicit renaming

in LS

Renaming: JIT renaming

SPE1 SPE2

main memory

A[4096]

bypass buffer B

foo moo

original object

in main memory

implicit renaming

in LS

buffer A

Renaming: JIT renaming

SPE main memory

A[4096]

bypass

buffer B

foo

moo

original object

in main memory

buffer A

• JIT renaming sometimes requires an SPE to bypass from
itself.

Renaming: JIT renaming

main memorystage out

original user data

renaming pool

renaming

• Decision between stage-out or renaming made at the
very last moment

• No synchronisation with PPE unless renaming pool
too small

• Relation between scheduling and renaming

SPE

Ongoing work

• verification of the bypassing protocol

• studying ways to incorporate scheduling

• distributed scheduling

• shared representation of the Task Dependence Graph (TDG)

Questions?

task dependence graph (TDG)

Speedup results

• Very much work in progress

• Linear algebra applications on 16x16 hypermatrices
of 64x64 floats

• Matrix multiplication, 2 variants of the Cholesky
decomposition, a Jacobi computation and an LU
decomposition.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

